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Abstract

We study optimal Bayesian persuasion when the prior on the underlying state is deter-

mined by an agent’s unobservable effort. Specifically, we consider a three-player game in

which the principal designs a signal, the agent exerts effort, and the decision-maker takes an

action that affects the other players’ utilities. The principal faces double objectives, persuading

the decision-maker and incentivizing the agent. We identify a trade-off between information

provision and incentive provision and develop a general method of characterizing an optimal

signal. We provide more concrete implications of moral hazard for optimal information design

by fully analyzing several natural examples.
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1 Introduction

We study an optimal information design in the presence of moral hazard. Specifically, we introduce
an additional player, the agent, to the Bayesian persuasion framework of Kamenica and Gentzkow
(2011) (KG, hereafter). The agent has preferences for the decision-maker’s (receiver’s) actions,
which are partially or fully aligned with those for the principal (sender). He exerts unobservable
effort, which determines the prior on the underlying state. In this context, the information designer
is concerned not only with information provision (persuasion) for the decision-maker, but also
with incentive provision for the agent. We investigate when there is a trade-off between the two
objectives and how the information designer optimally resolves the trade-off. To put it different,
we endogenize the prior, which is a primitive in KG, through the agent’s effort and analyze its
implications for Bayesian persuasion.
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To understand the underlying problem more clearly, consider the following example, which is
borrowed from KG but cast into a different context.1 A school (principal) wishes to place a student
in the labor market (the decision-maker). There are two types of jobs, a low-paying job and a high-
paying job. Although the school prefers the latter placement, the student may or may not have
acquired skills necessary for the high-paying job. The probability that the student is skilled at the
time of placement is given by 0.3. Suppose that a student gets a high-paying job if and only if the
market believes that the student is skilled with at least probability 1/2. This arises, for example, if
a risk-neutral firm earns utility 1 when hiring a low-skilled (high-skilled) student at a low-paying
(high-paying) and utility −1 otherwise.

Kamenica and Gentzkow (2011) show that the school can benefit from designing a sophisti-
cated grading policy. In the current example, the student gets a low-paying job for sure if the school
does not reveal any information about the student’s skill level. If the school reveals full informa-
tion, then the student gets a high-paying job if and only if he is indeed skilled and, therefore, with
probability 30%. An optimal policy involves a certain amount of obfuscation: the school assigns
a good grade (i.e., claims that the student is skilled) with probability 1 if the student is skilled and
with probability 3/7 even if the student is not skilled. In this case, given a good grade, the student
is believed to be skilled with probability 1/2 and, therefore, placed at a high-paying job. Under
this grading policy, a student gets a high-paying job with probability 60%.

We consider the case in which the prior belief, which determines the school’s capacity to per-
suade the market, is determined through the student’s effort. To be specific, suppose that the student
privately chooses whether to shirk or work hard. In the former case, the student never becomes
skilled, while in the latter case, he successfully acquires skills with probability 0.3. Assume that
the (risk-neutral) student obtains utility 1 if he gets a high-paying job and 0 if he gets a low-paying
job, and his disutility from working is given by 0.2. In what follows, we let 1 (0) denote a skilled
(unskilled) student and π(A|ω) represent the probability that the school assigns a good grade (A)
to the student (or, claims that the student is skilled) when his type (skill level) is ω = 0, 1.

To see how moral hazard influences an optimal information design, first consider the policy
that is optimal in KG’s model (i.e., π(A|1) = 1 and π(A|0) = 3/7). That policy, although optimal
given prior 0.3, does not provide sufficient incentive for the student to work, because

−c+ 0.3 · π(A|1) + 0.7 · π(A|0) = 2

5
< 1 · π(A|0) = 3

7
.

The market rationally expects this and assigns probability 0 to the student having acquired skills,

1Other natural examples include a credit ratings agency that interacts with both security issues (agent) and investors
(decision-maker), a marketing department which deals with both a production department (agent) and consumers
(decision-maker), a prosecutor who hires an investigator (agent) and faces a judge (decision-maker), and a news media
that transmit information about the government (agent) to the public (decision-maker).
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in which case the student never gets a high-paying job. A full information policy (π(A|1) = 1 and
π(A|0) = 0) performs better, because it at least induces the student to work (−c + 0.3 · π(A|1) =
0.1 > π(A|0) = 0). However, the policy provides too much incentive and, therefore, can be further
improved upon.

An optimal grading policy (signal) for the example is π(A|1) = 1 and π(A|0) = 1/3.2 This
policy exemplifies how the principal stirkes a balance between information vs. incentive provision.
She obfuscates information in the same way as in KG, but provides more precise information. The
latter is necessary for the student’s incentive, because −0.2+0.3 ·π(A|1)+0.7 ·π(A|0) = π(A|0)
when π(A|0) = 1/3 but the right-hand side exceeds as soon as π(A|0) > 1/3. The overall
probability of a high-paying job placement is equal to 0.3 + 0.7 · 1/3 = 8/15 ≈ 53.33%. Notice
that this exceeds the outcome under full information (30%) but falls short of the optimal outcome
in the absence of moral hazard (60%). The former shows the value of optimal information design,
while the latter represents the cost of moral hazard.

We characterize a principal-optimal signal for the general model in which there are n underly-
ing states, the principal and the agent have arbitrarily preferences regarding the decision-maker’s
actions, and the agent can choose any effort level. In the absence of moral hazard, KG show that
the principal’s problem reduces to choosing an optimal one among all Bayes-plausible distribu-
tions of posteriors (i.e., the distributions of posteriors such that the expected value of posteriors is
equal to the prior) and an optimal distribution of posteriors can be found by a con-convification
technique developed by Aumann and Maschler (1995). We explain how to extend these arguments
in our model. Moral hazard introduces an additional constraint to the principal’s problem, which
is that, as in the canonical principal-agent model, a signal (distribution of posteriors) must be such
that the agent has an incentive to choose an effort level that the principal intends to induce (and
the decision-maker expects). In other words, the principal’s problem becomes more stringent,
in the sense that she now faces an incentive constraint as well as a Bayes-plausibility constraint.
Provided that the first-order approach is valid (i.e., the agent’s optimal effort is characterized by
the first-order condition of the agent’s problem), the incentive constraint shrinks to one equality
constraint. Con-convification then can be applied jointly over the principal’s objective function
and the incentive constraint, and it suffices to select the maximal achievable value subject to both
Bayes-plausibility constraint and the incentive constraint.

2In this particular example, there is a continuum of optimal signals. For example, suppose that there are three grade
levels, A, B, and C. Any signal with the following properties is optimal:

π(A|1) + π(B|1) = 1, π(A|0) + π(B|0) = 1

3
, and π(1|A), π(1|B) ≥ 1

2
.

All of these signals are outcome equivalent: the student works (because −0.2 + 0.3π(A,B|1) + 0.7π(A,B|0) =
π(A,B|0)) and gets a high-paying job whenever his grade is A or B, which occurs with probability 8/15. This severe
multiplicity arises because both payoff and cost structures are discrete, which is not the case in our general model.
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The following two general results highlight distinguishing features of our model relative to
KG’s. If the principal’s utility is concave in the decision-maker’s induced posterior, in KG, it is
optimal for the principal to reveal no information. In our model, such a policy leads to no effort by
the agent and, therefore, cannot be optimal in any non-trivial environment.3 If there are n possible
states, then an optimal outcome can be achieved with at most n signal realizations (or posteriors)
in KG. In our model, the number increases by 1, that is, an optimal signal may necessitate n + 1

realizations (but not more than that). Both economically and geometrically, this is because of the
new incentive constraint, which calls for an extra degree of freedom.

We provide a more comprehensive set of results for the binary-state case (and under some natu-
ral economic assumptions). We show that the agent’s effort is maximized under a fully informative
signal and any effort below is also implementable. One corollary of this result is that if the prin-
cipal’s utility is convex in the decision-maker’s posterior, then a fully informative signal, which is
optimal in KG, continues to be optimal in our model. We also characterize the set of incentive-free
effort levels which can be implemented by the optimal policy in KG (i.e., for which the incentive
constraint does not bind). From this analysis, it follows that a fully informative signal. Finally, we
show that an optimal signal often takes a very simple form: it uses only two signal realizations and
introduces noise from one state into the other, so that an optimal distribution of posteriors includes
either 0 or 1. We explain why this is the case and when each case arises.

Since a pioneering contribution by Kamenica and Gentzkow (2011), the literature on Bayesian
persuasion has been growing rapidly. The basic framework has been extended to accommodate, for
examples, multiple sellers (e.g., Boleslavsky and Cotton, 2015; Gentzkow and Kamenica, 2017; Li
and Norman, 2015), multiple receivers (e.g., Alonso and Câmara, 2016; Chan et al., 2016), a pri-
vately informed receiver (e.g., Kolotilin et al., 2015), and dynamic environments (e.g., Ely, 2017;
Renault et al., 2014). More broadly, optimal information design has been incorporated in various
economic contexts, such as price discrimination (e.g., Bergemann et al., 2015), monopoly pricing
(e.g., Roesler and Szentes, 2017), and auctions (e.g., Bergemann et al., 2017). To our knowledge,
this is the first paper that incorporates moral hazard into the general Bayesian persuasion frame-
work.

Two contemporary papers, Rodina (2016) and Rodina and Farragut (2016), are particularly
close to this paper. Both papers study the same three-player game as ours. The main difference
lies in the principal’s objective. In our model, the principal has her own and general preferences
over the decision-maker’s actions. She is concerned with the agent’s effort, because the decision-
maker’s action depends on the (conjectured) effort. In both Rodina (2016) and Rodina and Farragut
(2016), the principal is concerned only with maximizing the agent’s effort.4 This can be interpreted

3Providing no information is optimal, for example, if the agent has fully opposing preferences from those of the
principal (i.e., the principal wishes to minimize the agent’s utility).

4In this sense, these papers are related to Hörner and Lambert (2016), who characterize the rating system that
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as a special case of our model in which the principal’s utility is linear in the decision-maker’s
posterior belief. On the other hand, they provide a more thorough analysis of the special case than
us. In particular, they allow for the general state space and consider multiple specifications with
different observability assumptions.

Barron et al. (2016) study another problem that combines information design (Bayesian per-
suasion) and moral hazard, but in a starkly different way from ours. They analyze a principal-agent
model in which the agent can engage in “gaming” (adding mean-preserving noise) after observ-
ing an intermediate output. The agent, due to his gaming ability, can always con-convificate his
payoffs, which implies that the principal cannot implement a contract that is convex in output.
They show that if the agent is risk neutral, then the maximal effort can be implemented by a linear
contract and the optimal effort necessarily has a linear concave closure.

The remainder of this paper is organized as follows. Section 2 introduces our baseline model
with binary states. Section 3 provides a general characterization of the model. Section 4 considers
three representative examples. Section 5 concludes by discussing a few relevant points, including,
in particular, how to generalize our analysis beyond the binary-state case.

2 The Model

The game. There are three players, agent (A), principal (P ), and decision-maker (D). There
is an underlying state ω ∈ Ω ≡ {0, 1}, which is endogenously determined by the agent’s effort.
The principal designs, and publicly announces, a signal π that relates Ω to a realization space
S. The principal is unrestricted in her signal design, in that she can choose any finite set S and
any stochastic process from Ω to S. For each ω ∈ Ω, we let πω(s) denote the probability that
s is realized conditional on the agent’s type ω. Given π, the agent exerts effort e ∈ R+, which
stochastically determines the agent’s type ω ∈ Ω ≡ {0, 1} but is unobservable by the other players.
More effort increases the probability that the agent becomes type 1. Specifically, we assume that
e is identical to the probability of type 1 (i.e., Pr{ω = 1|e} = e). The decision-maker observes a
signal realization s and chooses an action a ∈ A. The agent’s utility uA depends on the decision-
maker’s action a and his own effort e.5 For convenience, we assume that uA is additively separable
and given by uA(a, e) = uA(a) − c(e). The principal’s utility uP and the decision-maker’s utility
uD depend on the decision-maker’s action a and the agent’s type ω. All agents maximize their

maximizes the agent’s effort in a dynamic career concerns model with various information sources.
5We assume that uA is independent of the agent’s type ω for two reasons. First, technically, it ensures that the

agent’s utility depends only on the decision-maker posterior beliefs even after her deviation from the equilibrium
effort. In other words, the subsequent reformulation fails if uA also depends on ω. Second, economically, it means
that the agent exerts effort, not for her own consumption (i.e., not because she enjoys a direct benefit from becoming
type 1), but to generate favorable information about her.
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expected utility. Our main objective is the study of an optimal signal design by the principal, and
thus we focus on a principal-preferred perfect Bayesian equilibrium of this game.

Reformulation. Let µ denote the decision-maker’s belief about the state ω (the probability that
the decision-maker assigns to ω = 1). For any µ, let a(µ) denote the set of the decision-maker’s
optimal (mixed) actions.6 Then, we can reformulate the agent’s and the principal’s utility functions
as follows:

vA(µ) ≡ uA(a(µ)), and vP (µ) ≡ Eµ[uP (a(µ), ω)].

In other words, inducing a particular action a ∈ A is identical to inducing a posterior µ under
which the decision-maker’s optimal action is a. As in KG, this reformulation allows us to abstract
away from details of the decision-maker’s actual problem without incurring any loss of generality.
Note that a(µ) is not necessarily a singleton and, therefore, both vA and vP are correspondences
in general. In what follows, for notational convenience, we treat a(µ) (and vA and vP as well) as a
function unless necessary and noted otherwise.

Assumptions. The cost function c(e) is strictly increasing, convex and continuously differen-
tiable. In addition, c(0) = c′(0) = 0 and c′(1) < 1. As shown later, the assumption c′(1) > 1

ensures that the principal can never induce e = 1. Both vA and vP are upper hemi-continuous
and increasing in µ (precisely, max{vi(µ)} ≤ min{vi(µ′)} for any µ < µ′ and both i = A,P ).
The latter monotonicity assumption reflects a natural economic force (that the more optimistic the
decision-maker is about the agent’s type, the more favorable action he takes to the agent) and al-
lows us to provide sharper characterization results. In addition, the problem becomes trivial, with
the agent always choosing e = 0, if vA or vP is strictly decreasing. Finally, we normalize both the
agent’s and the principal’s utilities, so that vA(0) = vP (0) = 0 and vA(1) = vP (1) = 1.

Subgame. Given a signal π, the agent and the decision-maker play a simple extensive-form
game. Let e∗ denote an equilibrium effort level and µ(s) denote the decision-maker’s posterior
belief following a signal realization s. By Bayes’ rule,

µ(s) =
e∗π1(s)

e∗π1(s) + (1− e∗)π0(s)
.

For e∗ to be indeed an equilibrium, it must solve

max
e

∑
s

(eπ1(s) + (1− e)π0(s))vA(µ(s))− c(e).

6To be formal, let A(µ) ≡ argmaxa∈AEµ[uR(a, ω)], and define a(µ) ≡ ∆(A(µ)).
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Since the first term is linear in e and c(e) is strictly convex, it is necessary and sufficient that∑
s

(π1(s)− π0(s))vA(µ(s)) = c′(e∗).

Taken together, an equilibrium in the subgame given π is characterized by an effort level e∗ such
that ∑

s

(π1(s)− π0(s))vA

(
e∗π1(s)

e∗π1(s) + (1− e∗)π0(s)

)
= c′(e∗). (1)

Notice that there may exist multiple equilibria. In particular, e∗ = 0 is always an equilibrium,
as long as no signal realization s fully reveals ω = 1. Intuitively, if the decision-maker believes
that the agent would not exert effort, then µ(s) = 0 for any s, which in turn justifies e∗ = 0. This
equilibrium multiplicity can be used to restrict the principal’s strategy (e.g., by playing e∗ = 0

unless the principal chooses a signal that satisfies a particular property) but is inconsequential in
our analysis, because the principal-preferred equilibrium, which is our focus, involves the optimal
choice of equilibrium effort e∗ as well.

The principal’s problem. Given the characterization of the subgame above, the principal’s prob-
lem can be written as

max
π,e

∑
s

(eπ1(s) + (1− e)π0(s))vP (µ(s)),

subject to ∑
s

(π1(s)− π0(s))vA(µ(s)) = c′(e),

where
µ(s) =

eπ1(s)

eπ1(s) + (1− e)π0(s)
.

The principal’s problem can be reformulated as the one in which the sender chooses a distribution
of posteriors τ ∈ ∆(∆(Ω)), instead of a signal π, as formally stated in the following proposition.

Proposition 1 Given e, there exists a signal π that yields utility v to the principal if and only if

there exists a distribution of posteriors τ ∈ ∆(∆(Ω)) such that (i) Eτ [vP (µ)] = v, (ii) Eτ [µ] = e,

and (iii) Eτ [(µ− e)vA(µ)]/(e(1− e)) = c′(e), where Eτ [f(µ)] =
∫
f(µ)τ(µ)dµ.

Proof. See the appendix.

The second requirement that Eτ [µ] = e is identical to the one in KG and commonly referred to
as the Bayes-plausibility (BP) constraint. The last requirement corresponds to the agent’s incentive
constraint. To see how equation (1) can be translated into (iii) in the proposition, fix a signal π.
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Without loss of generality, assume that µ(s) ̸= µ(s′) whenever s ̸= s′. Then, for any s ∈ S,

τ(µ(s)) = eπ1(s) + (1− e)π0(s), and µ(s) =
eπ1(s)

eπ1(s) + (1− e)π0(s)
.

Solving these two equations yields

π1(s) =
µ(s)τ(µ(s))

e
and π0(s) =

(1− µ(s))τ(µ(s))

1− e
.

Plugging these two into equation (1) leads to (iiii).
There are two noteworthy facts about the IC constraint. First, it holds for e > 0 only when τ

includes at least two posteriors: if τ is degenerate on µ, then µ = e because Eτ [µ] = e, in which
case Eτ [(µ − e)vA(µ)]/(e(1 − e)) = 0 < c′(e). This is a clear manifestation of the underlying
moral hazard problem in our model. In the absence of moral hazard, if vP is concave in µ, then it
is optimal for the principal not to reveal any information. Such an uninformative policy does not
provide a proper incentive for the agent and, therefore, can never be optimal in our model. Second,
the effect of inducing a particular posterior µ on the IC constraint, summarized by (µ − e)vA(µ),
takes an intriguing form: it is decreasing initially, reaches 0 when µ = e, and increases fast
thereafter. This pattern is driven by the presence of two channels through which the agent can
be incentivized. One (reflected in vA(µ)) is through differentiating rewards based on a signal
realization, and the other (reflected in µ− e) is through controlling the probability of each reward.

3 Searching for the Optimal Solution

In this section, we characterize an optimal solution to the principal’s problem. We let τ e denote
an optimal distribution of posteriors that implements effort e and V e the corresponding expected
utility of the principal. In other words, τ e solves

max
τ∈∆(∆(Ω))

Eτ [vP (µ)], subject to (BP ) Eτ [µ] = e, and (IC)
Eτ [(µ− e)vA(µ)]

e(1− e)
= c′(e),

and V e ≡ Eτe [vP (µ)]. We also define V ∗ ≡ maxe V
e.

3.1 Implementable and Incentive-free Effort Levels

We say that an effort level e is implementable if there exists a signal π (equivalently, a distribution
of posteriors τ ) that satisfies both BP and IC constraints. The following proposition shows that an
effort level is implementable if and only if it is below a certain threshold.
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Proposition 2 Let e be the value such that c′(e) = 1. Then, e is implementable if and only if e ≤ e.

Proof. See the appendix.

Importantly, the upper bound e is achieved by a fully informative signal. To see this clearly,
notice that under a fully informative signal, the agent’s problem is simply

max
e
evA(1) + (1− e)vA(0)− c(e),

whose solution is given by c′(e) = 1 and, therefore, identical to e. Intuitively, a fully informative
signal maximizes incentive provision in both relevant channels. First, it maximizes dispersion in
rewards, because vA(1) − vA(0) ≥ vA(µ) − vA(µ

′) for any µ, µ′ ∈ [0, 1]. Second, it minimizes
both type I and type II errors and, therefore, provides a maximal incentive given any rewards.

There may or may not be a conflict between incentive provision and information provision.
For example, if vP (µ) is convex, then a fully informative signal is optimal in the absence of the
IC constraint. Since it also induces maximal effort by the agent, it is clearly an optimal signal. To
the contrary, if vP (µ) is concave, then an optimal signal is completely uninformative without the
IC constraint. However, the signal clearly violates the IC constraint and, in fact, leads to the most
undesirable outcome of e = 0.

In order to utilize this idea, let V̂ e denote the maximal attainable value to the principal in the
relaxed problem without the IC constraint. In other words,

V̂ e = max
τ∈∆(∆(Ω))

Eτ [vP (µ)] subject to Eτ [µ] = e.

Obviously, V e = V̂ e = 0 if e = 0 and V e ≤ V̂ e for any e ≤ e. Let e be the maximal value such
that V e = V̂ e. The following result shows that, in our search for the optimal solution, it suffices to
consider the effort levels between e and e.

Proposition 3 For any e < e, V e ≤ V e ≤ V ∗.

Proof. According to KG,
V̂ e = sup{z|(e, z) ∈ co(vP )},

where co(vP ) is the convex hull of the graph of p. Since vP is increasing in µ, V̂ e is increasing in
e. It then follows that for any e < e,

V e ≤ V̂ e ≤ V̂ e = V e ≤ max
e≤e

V e = V ∗.
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c′(e)

Figure 1: Finding e when vP (µ) = vA(µ) = I{µ≥1/2} and when vP (µ) = (1 + (2µ− 1)1/3)/2 and
vA(µ) = µ. The upper panels draw vP (µ), while the lower panels show (µ− e)vA(µ)/(e(1− e)).
The cost function used for the left panel is c(e) = e2/4, while that for the right panel is c(e) =
5e2/6.

Although e depends on all relevant functions, it is often straightforward calculate its value. In
particular, e = 0 if vP is concave, while e = e if vP is convex. Figure 1 illustrates how to find e
when vP (µ) is neither concave nor convex. The left panels are for the case where both vP and vA
have a discrete jump at 1/2, and the right panels are for the case where vP (µ) is initially convex
but eventually concave and vA is linear. In both cases, given e, the con-convification technique in
Aumann and Maschler (1995) can be used to find V̂ e and the corresponding optimal distribution of
posteriors. For the distribution to provide a just enough incentive for the agent, it suffices to check
whether the IC constraint holds.

In our model, the principal designs a signal first and the agent exerts effort then. Suppose,
instead, that the principal designs, or can revise, a signal after the agent chooses e. In this case, the
principal necessarily adopts an optimal signal in the sense of KG and, anticipating this, the agent
adjusts his effort choice. e is the maximal effort that can be induced in this alternative scenario.
This shows that it is the principal’s commitment power to a signal that enables her to implement
e ∈ (e, e].
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Figure 2: The left panel depicts the curve K, while the right panel depicts its convex hull co(K).
In this example, e = 0.5.

3.2 Main Characterization

In order to characterize the maximal value V e and the optimal distribution of posteriors τ e, we
extend an elegant geometric method by KG. For notational simplicity, define a function h : [0, 1] →
R, so that

he(µ) ≡ (µ− e)vA(µ)

e(1− e)
− c′(e).

Notice that the IC constraint reduces to Eτ [he(µ)] = 0.
Define the following curve in R3:

K ≡ {(µ, he(µ), vP (µ)) : µ ∈ [0, 1]}.

The left panel of Figure 2 depicts a sample path when vP (µ) is concave and vA(µ) is linear. Each
point in K represents the value of the constraint (he(µ)) and the principal’s utility (vP (µ)) when a
particular posterior is induced. Clearly, e(> 0) is not even implementable if the principal reveals
no information and induces a degenerate posterior e. In the figure, that is reflected in the fact that
the vertical line built on (e, 0, 0) does not cross K.

Now construct the convex hull of the curve K, denoted by co(K) and visualized in the right
panel of Figure 2. Then, select the points in the convex hull such that the first coordinate is equal
to e and the second coordinate is equal to 0. Formally, define K∗ ≡ {(x1, x2, x3) ∈ co(K) :

x1 = e, x2 = 0}. In Figure 2, K∗ corresponds to the intersection of co(K) and the vertical line
above (e, 0, 0). Since K∗ is a subset of the convex hull of K, for any (e, 0, z) ∈ K∗, there exists a
probability vector (τ(µ1), ..., τ(µn)) and a sequence {(µs, he(µs), vP (µs)) ∈ K}ns=1 such that

(e, 0, v) =
∑
s

τ(µs)(µs, h
e(µs), vP (µs)).

11



Conversely, since K∗ includes all the points in the intersection of co(K) and the vertical line on
(e, 0, 0), any convex combination of the points inK such that

∑
µsτ(µs) = e and

∑
he(µs)τ(µs) =

0 belongs to K∗. Notice that this means that K∗ represents all possible convex combinations of the
points in K that satisfy both BP constraint (

∑
s µsτ(µs) = 0) and IC constraint (

∑
s h

e(µs) = 0).
It then follows that the maximal principal utility subject to the two constraints coincides with the
maximal third coordinate value of K∗, as formally reported in the following theorem.

Theorem 1 The maximal utility the principal can obtain conditional on inducing e is equal to

V e = max{v : (e, 0, v) ∈ co(K)}.

If e ≤ e, then there exists an optimal distribution of posteriors τ e ∈ ∆(∆(Ω)) such that its support

contains at most three posteriors (i.e., |supp(τ e)| ≤ 3).

Proof. Proposition 2 implies that K∗ is non-empty if and only if e ≤ e. Since co(K) is closed and
bounded, K∗ is also closed and bounded. These imply that if e ≤ e, then there exists a distribution
of posteriors τ e that is implementable and yields expected utility V e to the principal. For the result
on the cardinality of the support of τ e, notice that V e is the value on the boundary of the convex
hull in R3. The result then follows from Carathéodory’s theorem, which states that any point on
the convex hull on a 2-dimensional hyperplane can be made of at most three extreme points.

Recall that in the absence of moral hazard (i.e., in the model of KG), if there are only two states,
then the maximal principal can be achieved with at most two posteriors. In our model, moral hazard
introduces the IC constraint and, therefore, an additional dimension. Via Carathéodory’s theorem,
this translates into the possibility of necessitating one additional signal. As shown in the next
section, two posteriors (signals) are still sufficient in many examples, but there are cases where at
least three posteriors (signals) are necessary.

Convex hull is, in general, hard to construct from a curve in R3. We provide an alternative
characterization, which, as shown in the next section, allows us to derive an optimal solution in a
simple fashion in many examples. The above geometric analysis suggests that there is a hyperplane
that is tangent to co(K) at (e, 0, V e). This means that there exists a (normalized) direction vector
d = (−λ1, ψ, 1) and a scalar λ0 such that d · x ≤ λ0 for any x = (µ, he(µ), vP (µ)) ∈ co(K) and
d · x = λ0 if τ e(µ) > 0. Since co(K) is the convex hull of K, it is necessary and sufficient that the
former part holds only for x ∈ K. Arranging the terms, we obtain the following result.7

7Note that Corollary 1 provides only a necessary condition. The underlying reason is identical to that for the
method of Lagrange multipliers.
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Figure 3: The concave solid curve depicts vP (µ) = 1−(1−µ)4, while the other solid curve depicts
L(µ, ψ) = vP (µ) + ψhe(µ) when vA(µ) = µ.

Corollary 1 If τ e is an optimal distribution of posteriors that induces e, then there exists a vector

(λ0, λ1, ψ) such that

L(µ, ψ) ≡ vP (µ) + ψhe(µ) ≤ λ0 + λ1µ, for all µ ∈ [0, 1],

with equality holding if τ e(µ) > 0. If e ∈ (e, e), then ψ > 0.

Proof. See the appendix for a proof for the last statement.

In order to understand this condition, notice that if ψ = 0, then the condition is identical to the
one for KG. An optimal signal can be found by drawing a straight line λ0+λ1µ that stays just above
vP (µ) and identifying a set of posteriors that span (e, V̂ e). In Figure 3, vP (µ) is concave, and thus
V̂ e = vP (e) and the optimal value can be induced with a degenerate posterior e. The only necessary
change due to moral hazard is that the same technique is applied over L(µ, ψ) = vP (µ) + ψhe(µ)

for some ψ, which needs not be equal to 0 in general (and is never equal to 0 if vP (µ) is concave).
Figure 3 shows how L(µ, ψ) differs from vP (µ) how it affects the shape of the straight line. The
multiplier ψ is also an unknown variable, but the IC constraint provides an additional equation
to solve for τ e as well as ψ. In Figure 3, the IC constraint is reflected in the fact that the two
dashed lines cross at the optimal point (e, V e), as it implies that Eτe [vP (µ)] = Eτe [L(µ, ψ)] =
Eτe [vP (µ)] + ψEτe [h

e(µ)], and thus Eτe [he(µ)] = 0.
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4 Examples

In this section, we analyze some representative examples. Each example not only illustrates how
to apply the general method developed in the previous section, but also has a natural economic
interpretation and, therefore, is of interest by itself.

4.1 Concave-Linear Case

We first consider the case where vP (µ) is concave, while vA(µ) is linear. This case arises, for
example, when the market (decision-maker) offers a competitive wage, the student (agent) is risk
neutral and, therefore, maximizes the expected wage, and the school (principal) is mainly con-
cerned with undesirable placement outcomes. For analytical tractability, we assume that vP (µ) is
twice continuously differentiable.

Since vA(µ) = µ, he(µ) simplifies to

he(µ) =
(µ− e)µ

e(1− e)
− c′(e).

This implies that the IC constraint becomes identical to

Eτ [h
e(µ)] =

var(µ)

e(1− e)
− c′(e) = 0.

This highlights the relationship between dispersion of the distribution of posteriors and the agent’s
effort. The more dispersed the induced posteriors are, the higher effort the agent chooses. Con-
versely, the principal can induce a particular effort level as long as she introduces enough dispersion
into the distribution of posteriors.

Now fix e ∈ (0, e) and consider the function L(µ, ψ). Since vA(µ) = µ, its second derivative
with respect to µ takes the following form:

Lµµ ≡ ∂2L(µ, ψ)
∂µ2

= v′′P (µ) +
2ψ

e(1− e)
.

Although v′′P (µ) < 0, Lµµ is not necessary negative because of the second term. In fact, for ψ to
be a part of the principal’s solution, Lµµ cannot be uniformly negative: if so, the optimal signal is
degenerate and, therefore, cannot implement e. Conversely, ∂

2L(µ,ψ)
∂µ2

cannot be uniformly positive
either: if so, the optimal signal is fully informative and, therefore, provides too much incentive for
the agent. This discussion implies that an optimal value of ψ is such that Lµµ has both positive and
negative regions.

It is useful to define the following two types of signals, both of which take a particularly simple
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form but play a crucial role in subsequent discussions.

Definition 1 A simple inflationary signal (policy) is a binary signal that induces either 0 or µI(>

0). A simple deflationary signal (policy) is a binary signal that induces either µD(< 0) or 1.

A simple inflationary signal introduces noise into a good signal realization. In other words, it
induces a high posterior µD with probability 1 if ω = 1 but does so with a positive probability even
if ω = 0 (thus, partially inflating the agent’s type). A simple deflationary signal does the opposite,
inducing a low posterior µD with probability 1 if ω = 0 but with a positive probability even if
ω = 1.

For both signals, there are two unknowns, one unknown posterior (µI or µD) and the probability
of the posterior being induced (denoted by γI and γD, respectively). These two unknowns can be
obtained from the two equality constraints. For the inflationary one, since vA(µ) = µ,

(BP ) µIτI = e and (IC)
(µI − e)µIγI
e(1− e)

= c′(e).

Therefore,
µI = e+ (1− e)c′(e) and γI =

e

µI
.

It is also easy to show that

µD = e(1− c′(e)) and γD =
1− e

1− µD
.

Note that this implies that implementable simple inflationary and deflationary signals are indepen-
dent of vP (µ).

The following result shows that a full characterization of the optimal signal is available for an
important class of concave functions such that v′′P (µ) is monotone.

Proposition 4 Suppose v′′P (µ) < 0 and vA(µ) = µ. The optimal signal that induces e ∈ (0, e)

is a simple inflationary policy if v′′P (µ) decreases in µ and a simple deflationary policy if v′′P (µ)

increases in µ.

Proof. If v′′P (µ) decreases in µ, then Lµµ also decreases in µ. This means that with an optimal ψ,
there exists µ ∈ (0, 1) such that Lµµ ≥ 0 if and only if µ ≤ µ. This means that the function L(·, ψ)
is convex until µ and concave after µ. By Corollary 1, an optimal signal induces 0 or a certain
posterior above e as a simple inflationary signal. The logic can be easily modified for the case in
which v′′P (µ) increases in µ.

Intuitively, the principal with a concave value function wishes to minimize dispersion of in-
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Figure 4: The left panel depicts the case in which vP (µ) = 1− (1− µ)1.5 (i.e., η = 1.5), while the
right panel shows the case in which vP (µ) = 1− (1− µ)5 (i.e., η = 5).

duced posteriors. In the absence of moral hazard, this leads to her revealing no information. In
our model, it induces the principal to use two posteriors, rather than three posteriors. The result
that an optimal signal involves extreme posteriors 0 or 1 is due to our focus on well-behaved con-
cave functions. Since v′′P (µ) is monotone, L(·, ψ) can have at most one inflection point, and thus
the supporting line (λ0 + λ1µ) crosses either 0 or 1. This property is not guaranteed if v′′P (µ) is
sufficiently irregular that L(·, ψ) has multiple inflection points.

In order to understand which policy is optimal when, consider the polynomial case in which
vP (µ) = 1− (1− µ)η for some η > 1. In this case,

v′′′P (µ) = (1− (1− µ)η)′′′ = η(η − 1)(η − 2)(1− µ)η−3.

Therefore, by Proposition 4, the optimal signal is inflationary if η ∈ (1, 2) and deflationary if
η > 2. The result certainly depends on the curvature of vP (µ). However, risk aversion is not
the underlying determinant. Consider the CARA utility function case in which vP (µ) = (1 −
e−ηµ)/(1− e−η) for some η > 0. In this case,

v′′′P (µ) =
(1− e−ηµ)

′′′

1− e−η
=

η3e−ηµ

1− e−η
.

Therefore, the optimal signal is deflationary no matter how close η is to 0 (i.e., the principal is
almost risk neutral).
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The crucial property is the effect that clockwise variance-preserving rotation has on the prin-
cipal’s expected utility. To see this, again, consider the polynomial case in which vP (µ) =

1 − (1 − µ)η for some η > 1. Given e ∈ (0, e), there is a continuum of pairs (µ1, µ2) such
that µ1 < e < µ2 and there exists γ1 that satisfies

(BP ) γ1µ1 + (1− γ1)µ2 = e and (IC)
var(µ)

e(1− e)
− c′(e) = 0.

An increase in µ1 increases µ2 (because of IC) but decreases γ1 (because of BP), causing (µ1, µ2)

to rotate clockwise (see the dashed lines in Figure 4). In the quadratic case where vP (µ) = 1 −
(1− µ)2, this rotation has no effect on the principal’s expected payoff, because

γ1vP (µ1) + (1− γ1)vP (µ2) = γ1(2µ1 − µ2
1) + (1− γ1)(2µ2 − µ2

2) = 2e− var(µ) + e2.

Indeed, in this quadratic case, any pair of (µ1, µ2) that satisfy both BP and IC, including both
simple inflationary and deflationary signals, are optimal. If η ∈ (1, 2), then the same rotation
always decreases the principal’s expected payoff (see the left panel of Figure 4), which ultimately
leads to the optimality of the simple inflationary signal. If η > 2 (or vP (µ) is a CARA function),
then the rotation always increases the principal’s expected payoff (see the right panel of Figure 4)
and, therefore, the optimal policy is deflationary.

4.2 Identically Concave Case

We now consider the case in which the principal and the agent have an identical concave utility
function (i.e., vP (µ) = vA(µ) = v(µ)). This emerges, for example, when a school’s reputation
depends on its full placement records. It also captures the case where the principal is altruistic
or another self of the (time-inconsistent) agent.8 As in the previous case, we assume that v(µ) is
twice continuously differentiable.

Differentiating L(µ, ψ) with respect to µ twice yields

Lµµ = v′′(µ) + ψ
2v′(µ) + (µ− e)v′′(µ)

e(1− e)
.

8Recall that we assume that the principal’s utility does not depend on the agent’s effort. However, this assumption
does not affect the characterization of an optimal signal given e, although it does matter for the optimal choice of e. In
other words, the principal would choose a lower e if she internalizes the agent’s effort, but our main analysis regarding
the optimal signal for each e carries through unchanged.
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Let r(µ) ≡ −v′′(µ)/v′(µ) (Arrow-Prat measure of risk aversion). The equation then reduces to

Lµµ
v′(µ)

= −
(
1 +

ψ(µ− e)

e(1− e)

)
r(µ) +

2ψ

e(1− e)
.

This implies that

Lµµ > 0 ⇔ e(1− e− ψ)

2ψ
+
µ

2
<

1

r(µ)
. (2)

As in the concave-linear case, an optimal ψ must be such that L is neither concave nor convex and
has at least one inflection point. From these observation, it is possible to extrapolate the following
result.

Proposition 5 Suppose that vP (µ) = vA(µ) = v(µ) and v(µ) is concave.

• If r(µ) increases in µ (Increasing Absolute Risk Aversion), then the optimal signal is a simple

deflationary policy.

• Suppose that 1/r(µ) = a + bµ for some a and b (Hyperbolic Absolute Risk Aversion). The

optimal signal is a simple inflationary policy if b < 1/2 and a simple deflationary policy if

b > 1/2.

Proof. If r(µ) increases in µ, then the left-hand side in equation (2) rises, while the right-hand
side falls, as µ increases. This implies there exists µ ∈ (0, 1) such that Lµµ ≥ 0 if and only if
µ ≤ µ. It follows that an optimal distribution of posteriors involves 0 and a certain positive µ. If
1/r(µ) = a+ bµ, then the right-hand side rises faster than the left-hand side if and only if b > 1/2.
This means that L switches from concave to convex (and the optimal policy is deflationary) if
b > 1/2 and from convex to concave (and the optimal policy is deflationary) if b < 1/2.

4.3 Discrete-Linear Case

Now suppose that vP (µ) has a discrete jump at θ ∈ (0, 1) (i.e., vP (µ) = I{µ≥θ}) and vA(µ) is linear
(i.e., vA(µ) = µ).9 The latter assumption is not necessary for the subsequent analysis but gives
extra tractability. This case corresponds to the case in which the school wishes to maximize the
proportion of students who get a wage above a certain threshold. In order to reduce the number of
cases to consider, we also assume that c′(θ) > 1, so that e < θ.10

9It is straightforward to modify the analysis for the case in which vA(µ) is also discrete, as in the example used in
the introduction. One disadvantage of the alternative discrete case is that there is a continuum of optimal solutions.

10Without this assumption, it may be optimal to induce θ or 1. In KG, this form of dispersion is not relevant,
because if the prior is above θ, then an uninformative signal is optimal. In our model, it can be useful and indeed
optimal because the principal can induce a certain level of effort at no cost on her side.
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Figure 5: The step function represents vP (µ) = I{µ≥θ}, while the solid curve depicts L(µ, ψ) when
vA(µ) = µ.

Unlike in the previous concave cases, e > 0 in this case. Specifically, in the absence of moral
hazard, the principal induces only 0 or θ, unless e ≥ θ. This implies that e is given by the value
such that for some γ > 0,

(BP ) γθ = e and (IC)
(θ − e)γ

e(1− e)
− c′(e) = 0.

Combining the two conditions yields

θ − e

θ(1− e)
= c′(e).

From now on, we restrict attention to e ∈ (e, e).
Since vP (µ) = I{µ≥θ} and vA(µ) = µ,

L(µ, ψ) =

 ψ
(

(µ−e)µ
e(1−e) − c′(e)

)
, if µ < θ,

1 + ψ
(

(µ−e)µ
e(1−e) − c′(e)

)
if µ ≥ θ.

In other words, L(·, ψ) is a quadratic function but is shifted upward by 1 from θ (see Figure 5).
This means that there are three possibilities: the supporting line λ0 + λ1µ touches (i) (0,L(0, ψ))
and (θ,L(θ, ψ)), (ii) (0,L(0, ψ)) and (1,L(1, ψ)), and (iii) all three points at 0, θ, and 1. However,
(i) leads to e, while (ii) results in e. Therefore, the only possibility is that ψ is such that all three
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points lie on the supporting line, as shown in Figure 5.

Proposition 6 Suppose that vP (µ) = I{µ≥θ}, vA(µ) = µ, and c′(θ) > 1. Then, for any e ∈ (e, e),

an optimal signal τ(e) involves three posteriors, 0, θ, and 1. The probabilities of each posterior

are τ e(θ) = e(1−e)(1−c′(e))
θ(1−θ) and τ e(1) = e− τ e(θ)θ.

Proof. The result on the use of three posteriors follows from the discussion above. τ e can be
explicitly calculated from the following three equations:

τ e(0) + τ e(θ) + τ e(1) = 1, (BP ) Eτe [µ] = e, and (IC) Eτe [h
e(µ)] = 0.

Among other things, this case demonstrates that the result on the number of necessary posteri-
ors in Theorem 1 binds. In other words, although a binary signal (in particular, simple inflationary
and deflationary signals) is often sufficient, as shown in all the previous cases, an optimal signal
may require three posteriors (signal realizations).

5 Discussion

5.1 Generalization

Among various simplifying assumptions we have maintained so far, the most restrictive assumption
is, arguably, that the set of states Ω has only two elements. If |Ω| > 2, then the players’ beliefs can
no longer be represented by a one-dimensional variable and, therefore, we cannot provide as many
clear and concrete results as in the previous two sections. Nevertheless, it is possible to generalize
our main characterization (Theorem 1), as shown below.

Suppose that there are n(≥ 0) states (i.e., |Ω| = n). In this case, the players’ beliefs µ are
represented by an element in a (n − 1)-simplex ∆(Ω) ≡ {(x1, ...., xn) ∈ [0, 1]n :

∑n
k=1 xk = 1}.

The state ω is determined according to the function f : Ω×R+ → [0, 1], where f(ω|e) denotes the
probability that the state is ω when the agent’s effort is e. We assume that f(ω|·) is continuously
differentiable. It is convenient to assume that f(·|e) has full support given any e. A signal, chosen
by the principal, consists of a finite set S and a function π : S × Ω → [0, 1], where π(s|ω) is the
probability that s is realized when the state is ω.

As in the baseline model, first consider the subgame between the agent and the decision-maker
given a signal. Given an equilibrium effort e∗, the decision-maker’s belief following a signal
realization s is given by

µs(ω) =
π(s|ω)f(ω|e∗)∑
ω′ π(s|ω′)f(ω′|e∗)

.
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Given this, the agent’s problem is

max
e

∑
ω

∑
s

vA(µs)π(s|ω)f(ω|e)− c(e) =
∑
s

vA(µs)π(s|e)− c(e),

where π(s|e) ≡
∑

ω π(s|ω)f(ω|e). The first-order condition, combined with an equilibrium re-
quirement that e∗ is an optimal effort, yields∑

s

vA(µs)πe(s|e∗)− c′(e∗) = 0.

As in other principal-agent problems, this condition is not sufficient for the agent’s optimal effort
choice in general, but it is necessary to assume the property in order to proceed further.11

As in the baseline model, we rewrite the first-order condition in terms of a distribution of
posteriors τ , instead of a signal π. As reported in KG, given e∗ (and the consequent prior distri-
bution f(·|e∗), a Bayes-plausible distribution of posteriors can be induced by a signal π such that
π(s|ω) = µs(ω)τ(µs)/f(ω|e∗). Inserting this into the above first-order condition and arranging
the terms yield

Eτ

[(∑
ω

µ(ω)
fe(ω|e∗)
f(ω|e∗)

)
vA(µ)

]
− c′(e∗) = 0,

which can be simplified to Eτ [he
∗
(µ)] = 0 by letting

he(µ) ≡

(∑
ω

µ(ω)
fe(ω|e)
f(ω|e)

)
vA(µ)− c′(e).

This is a generalization of the IC constraint in the baseline model. Given this constraint, it is
straightforward to generalize the geometric argument for the baseline model.

Theorem 2 Suppose that the set of states Ω has n(≥ 0) elements and the first-order approach is

valid. For any implementable e,

V e = max{v : (f(·|e), 0, v) ∈ co(K)},
11One specification under which the first-order approach is valid is when f(ω|e) takes the following form: there

exist two probability assignment functions f0, f1 : Ω → [0, 1] such that

f(ω|e) = ef1(ω) + (1− e)f0(ω) for all ω ∈ Ω and e ∈ [0, 1].

In this case, as in our baseline model, the first term in the agent’s objective function is linear in e and, therefore, the
first-order condition is necessary and sufficient for the agent’s optimal effort.
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where

K ≡ {(µ, he(µ), vP (µ)) : µ ∈ ∆(Ω)},

and there exists an optimal distribution of posteriors τ e ∈ ∆(∆(Ω)) such that its support contains

at most n+ 1 posteriors (i.e., |supp(τ e)| ≤ n+ 1). In addition, there exist λ0 ∈ R, λ1 ∈ Rn, and

ψ ∈ R such that

L(µ, ψ) ≡ vP (µ) + ψhe(µ) ≤ λ0 + λ1 · µ, for all µ ∈ ∆(Ω),

with equality holding if τ e(µ) > 0.

Proof. The argument for the result on V e is identical to that for the baseline model. The result
on the use of at most n + 1 posteriors follows from the fact that f(·|e), 0, V e) is on the boundary
of co(K) ⊂ Rn+1 (via Carathéodory’s theorem). The necessary condition for τ e follows from the
same logic as in Corollary 1.

5.2 Observable Efforts

We have assumed that the agent’s effort is not observable to the other two players. Certainly, the
principal prefers to observe e, because if so, she can condition a signal on e as well (i.e., if a signal
is a function π(s|ω, e)) and, therefore, implements each effort level more efficiently. For example,
if vA is concave (convex), then she can reveal full (no) information, unless the agent chooses a
particular effort level.

For the decision-maker’s problem, cnsider the concave-linear case in Section 4.1 and now
suppose that the agent’s effort e is observable to the decision-maker. In this case, the agent’s
problem is given by

max
e

∑
s

(eπ1(s) + (1− e)π0(s))vA(µ(s, e))− c(e),

where µ(s, e) = eπ1(s)/(eπ1(s)+(1−e)π0(s)). The difference from the baseline model is that the
decision-maker’s posterior belief µ(s, e) now depends not only on a signal realization s but also
on actual effort e. When vA(µ) = µ, independent of a signal π, the problem reduces to e − c(e),
because∑

s

(eπ1(s) + (1− e)π0(s))vA(µ(s, e)) =
∑
s

(eπ1(s) + (1− e)π0(s))µ(s, e) = e.

It then follows that the agent chooses e and, since vP is concave, it is optimal for the principal to
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reveal no further information about ω.
This example demonstrates that it is not so clear cut whether the decision-maker would prefer

to observe e. It would increase the agent’s effort, but the principal may choose to provide less
information. Depending on the decision-maker’s underlying preferences, on which we do not
impose any restrictions, the decision-maker may prefer not to observe the agent’s effort, which is
in good contrast to a conventional wisdom in the principal-agent problem.

Appendix: Omitted Proofs

Proof of Proposition 1. Given the analysis in the main text, it suffices to show the sufficiency.
Let τ ∈ ∆(∆(Ω)) be a distribution of posterior distributions that satisfy (i)-(iii). Consider the
following signal: let S ≡ {µ ∈ ∆(Ω) : τ(µ) > 0}. For each s ∈ S,

π1(s) =
s

e
τ(s) and π0(s) =

1− s

1− e
τ(s).

Notice that
µ(s) =

eπ1(s)

eπ1(s) + (1− e)π0(s)
= s.

It then follows that∑
s∈S

(eπ1(s) + (1− e)π0(s))vP (µ(s)) =
∑
s∈S

τ(s)vP (s) = Eτ [vP (µ)] = v,

and ∑
s

(π1(s)− π0(s))vA(µ(s)) =
∑
s

(s− e)vA(s)

e(1− e)
τ(s) =

Eτ [(µ− e)vA(µ)]

e(1− e)
= c′(e).

Proof of Proposition 2. We first show that e is the upper bound to the set of implementable
effort levels. Under any signal π, the agent chooses e to maximize∑
s

(eπ1(s) + (1− e)π0(s)) vA(µ(s))−c(e) = e
∑
s

π1(s)vA(µ(s))+(1−e)
∑
s

π0(s)vA(µ(s))−c(e).

Since the first two terms are linear, while c(e) is strictly convex, in e, the optimal effort level is
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determined by∑
s

π1(s)vA(µ(s))−
∑
s

π0(s)vA(µ(s)) ≥ c′(e), with equality holding if e < 1.

Since vA is weakly increasing,∑
s

π1(s)vA(µ(s))−
∑
s

π0(s)vA(µ(s)) ≤ vA(1)− vA(0) = 1.

These imply that e such that c′(e) > 1, which is equivalent to e > e, is not implementable.
Fix e ∈ [0, e], and consider the following distribution of posteriors, which stems from a convex

combination of a fully informative signal and a fully noisy signal:

γ(0) = c′(e)(1− e), γ(e) = 1− c′(e), γ(1) = c′(e)e.

This distribution is well-defined, because c′(e) < c′(e) < 1. It is straightforward to show that this
distribution of posteriors satisfies both BP and IC constraints and, therefore, e is implementable.

Proof of Corollary 1. We define another programming problem as follows:

Ṽ e = max
τ∈∆(∆(Ω))

Eτ [vP (µ)],

subject to
(BP ) Eτ [µ] = e and (IC ′) Eτ [h

e(µ)] ≥ 0.

This problem is more relaxed than the original problem but more stringent than the problem without
IC. Therefore, V e ≤ Ṽ e ≤ V̂ e for any e ≤ e. Now let

e′ ≡ sup{e : Ṽ e = V̂ e}.

Certainly, e′ ≥ e, because Ṽ e ≥ V e for any e. If e′ = e, then the desired result (that ψ > 0 for any
e ∈ (e, e)) immediately follows from Kuhn-Tucker theorem.

Suppose that e′ > e. Combining with the fact that V e < V̂ e (otherwise, e = e), this implies that
there exists τ̂ such that Eτ̂ [vP (µ)] = V̂ e′ , Eτ̂ [µ] = e′, and Eτ̂ [he(µ)] < 0. Meanwhile, since both
BP and IC’ are closed, there exists τ̃ such that Eτ̃ [vP (µ)] = V̂ e′ , Eτ̃ [µ] = e′, and Eτ̃ [he(µ)] > 0

(note that Eτ̃ [he(µ)] = 0 contradicts e′ > e). Now define τw = wτ̂ +(1−w)τ̃ . For any w ∈ [0, 1],

Eτw [vP (µ)] = wEτ̂ [vP (µ)] + (1− w)Eτ̃ [vP (µ)] = V̂ e′ ,
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Eτw [µ] = wEτ̂ [µ] + (1− w)Eτ̃ [µ] = e′,

and
Eτ̂ [h

e(µ)] ≤ Eτw [h
e(µ)] = wEτ̂ [h

e(µ)] + (1− w)Eτ̃ [h
e(µ)] ≤ Eτ̃ [h

e(µ)].

Asw increases from 0 to 1,Eτw [he(µ)] continuously rises fromEτ̂ [h
e(µ)](< 0) toEτ̃ [he(µ)](> 0).

This means that there exists w∗ such that Eτw∗ [he(µ)] = 0. Since τw∗ satisfies the original two
constraints but achieves V̂ e′ , e ≥ e′, which is a contradiction.
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